De DP-100 Azure Data Scientist training geeft je de kennis van data science en machine learning die je nodig hebt om machine learning-workloads op Microsoft Azure te implementeren en uit te voeren; in het bijzonder met behulp van Azure Machine Learning Service. Dit omvat het plannen en creëren van een geschikte werkomgeving voor data science-workloads op Azure, het uitvoeren van data-experimente en data-training.
Meer informatie
Het is ook mogelijk om de training virtueel te volgen. Dezelfde leerervaring als klassikaal waarbij je de trainer en medecuristen ziet en hoort maar dan vanaf thuis. De planning en kosten blijven gelijk.
Een klassikale cursus van Ictivity Training geeft je de garantie dat je uitstekend wordt opgeleid in een moderne comfortabele leeromgeving door de meest deskundige trainers op hun vakgebied. In aaneengesloten dagen volg je de training op één van onze locaties. Tijdens de klassikale training heb je de beschikking over moderne apparatuur in een rustige leeromgeving. Trainingen bestaan uit een gedeelte theorie maar je krijgt ook veel oefeningen die de dagelijkse praktijk nabootsen.
Ictivity Training heeft in Nederland locaties in Utrecht (Vianen) en Eindhoven, tevens is het mogelijk om een locatie naar wens aan te vragen. Indien je niet wenst te reizen, kun je de training remote volgen via Virtual Classroom
Deze leervorm begint met een intakegesprek tussen een Learning Consultant van Ictivity Training en de opdrachtgever. Hierbij inventariseren we de beginsituatie, de doelstelling, de praktijksituatie en het verwachtingspatroon van de deelnemer(s). Met de gegevens maken wij het trainingsprogramma op maat.
Voordelen:
Deze training is bedoeld voor data scientists in het algemeen, en data scientists die de verantwoordelijkheid hebben over het trainen en inzetten van machine learning models.
Module 1: Introduction to Azure Machine Learning
In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.
Lab : Creating an Azure Machine Learning Workspace
Lab : Working with Azure Machine Learning Tools
After completing this module, you will be able to
Module 2: No-Code Machine Learning with Designer
This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.
Lab : Creating a Training Pipeline with the Azure ML Designer
Lab : Deploying a Service with the Azure ML Designer
After completing this module, you will be able to
Module 3: Running Experiments and Training Models
In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.
Lab : Running Experiments
Lab : Training and Registering Models
After completing this module, you will be able to
Module 4: Working with Data
Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.
Lab : Working with Datastores
Lab : Working with Datasets
After completing this module, you will be able to
Module 5: Compute Contexts
One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.
Lab : Working with Environments
Lab : Working with Compute Targets
After completing this module, you will be able to
Module 6: Orchestrating Operations with Pipelines
Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.
Lab : Creating a Pipeline
Lab : Publishing a Pipeline
After completing this module, you will be able to
Module 7: Deploying and Consuming Models
Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.
Lab : Creating a Real-time Inferencing Service
Lab : Creating a Batch Inferencing Service
After completing this module, you will be able to
Module 8: Training Optimal Models
By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.
Lab : Tuning Hyperparameters
Lab : Using Automated Machine Learning
After completing this module, you will be able to
Module 9: Interpreting Models
Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions.
Lab : Reviewing Automated Machine Learning Explanations
Lab : Interpreting Models
After completing this module, you will be able to
Module 10: Monitoring Models
After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.
Lab : Monitoring a Model with Application Insights
Lab : Monitoring Data Drift
After completing this module, you will be able to
Je kunt hier het examen boeken voor deze training: DP-100
Code: | DP-100 |
Leervorm: | Klassikaal |
Dagen: | 3 |
€
1545
|
Per persoon
excl. BTW |
Naar inschrijfpagina |
|
Startdatum: |
16 dec 2024 |
Locatie: |
Nieuwegein
|
Deze trainingen kunnen wij ook als maatwerk bij jou / ons op locatie.